

Calibration plan of GRM onboard SVOM

Shijie Zheng and Xiaoyun Zhao

On behalf of GRM-IC team

IHEP, CAS

2024-04-22

Overview of SVOM To be launched in June, 2024

*The Visible Telescope" Narrow-field visible telescope appeture: Φ=400mm;视场: 26'×26' Dual Channel: 400 – 650 nm(blue) 650 – 1000 nm(red) positioning accuracy: 1arcsec

 GRM
 **

 **
 **

 **
 **

 **
 **

 **
 **

 **
 **

 **
 **

 **
 **

 **
 **

 **
 **

 **
 **

 **
 **

 **
 **

 **
 **

 **
 **

 **
 **

 **
 **

 **
 **

 **
 **

 **
 **

 **
 **

 **
 **

 **
 **

 **
 **

 **
 **

 **
 **

 **
 **

 **
 **

 **
 **

 **
 **

 **
 **

 **
 **

 **
 **

 **
 **</t

GFT-1&2 "Ground-based Follow-up Telescope"

GWAC "Ground Wide-Angle Cameras"

For GFTs&GWACs

• 5 minutes after receiving burst message to provide 0.5 arcsec of burst localization, shall include:

- D Pointing slew(start in 40s for
 - French GFT, in 60s for Chinese GFT)
 - □ Exposure time
- Data processing duration

FGFT, CGFT, GWACS Availability: 90% GWACs observation limit magnitude

Mv = 15

"The trigger camera" Wide-field X and Gamma rays telescope Energy band : 4keV–150keV Det area: ≈1000cm2 FoV: 89°×89° Energy Resolution: <1.6keV @ 60keV Position accuracy : 13arcmin

ECLAIRs

Narrow-field X-ray telescope Energy : 0.2–10keV, 35 cm²@1.5keV

FoV: 64'×64'

Energy Resolution: 80eV @1.5keV

Position accuracy: 2arcmin

... and

Beidou

Gamma-ray monitor (GRM)

GRD (Gamma Ray Detector): 3GRDs (Nal + PMT), onboard trigger, localization (~5 deg) and spectrum
GCD (GRM Calibration Detector): 3GCDs , ²⁴¹Am+PS+SiPM, in orbit calibration.
GPM (GRM Particle Monitor): PS+PMT, if in SAA.
GEB (GRM Electronic Box).

Flight Model

GRD&GCD

GPM

E-C relation

- High-gain channel E-C relation of
 GRD01 with hard X-ray beam and
 radioactive sources
- + Low-gain channel E-C relation of

GRD01 with radioactive sources

GRD#	Measured range (keV)	Designed range (keV)
GRD01	~ 8 - 5927	
GRD02	~ 8 - 5675	15 - 5000
GRD03	~ 8 - 5638	

Energy resolution

 $^{\rm A}$ 17.02%, 17.09% and 17.19%@60 keV for GRD01-03 with hard X-ray beam $^{\rm A}$ 16.54%, 16.53% and 16.46%@60 keV for GRD01-03 with $^{\rm 241}Am$

Energy resolutions of GRD01-03 vs energy. Measured with radioactive sources

With the incident angle ~60 deg, the effective area of GRD drops half

- Atmospheric albedo effects
 (Guo et al, 2020)
- dDRM: the direct detector response matrix
- aDRM: the atmospheric albedo matrix

The final response matrix when considering atmospheric albedo

① Orbit height: 625 km;

- ② Randomly sample 1000 GRB locations;
- ③ Remove those in the earth shadow;
- ④ The remaining 705 locations are the subject of this study;
- (5) The spherical angle between the GRD01 LoS and the Earth center is 68.03° which indicates nearly the worst case.

In orbit Calibration Plan

GRM: Large FoV, no imaging, no collimated/focused hard to get background spectrum directly.

Some choises:

- Background Model (by Aurélia Maïolo and Frédéric Piron)
- Pulsar: with pulse on/off
- Earth before/after occulation
- Other short burst: GRB, SGR

Crab nebula: background estimation

with a physical model (CXB, reflection,

albedo) in GRD1 of GRM (5%-10%),

From Fred's PPT.

In orbit Calibration plan

Flux precision Cal: GRM: Large FoV, no imaging, no collimated/focused hard to get background spectrum directly.

Some choises:

- Background Model (by Aurélia Maïolo and Frédéric Piron)
- Pulsar: with pulse on/off
- Earth' s occulation
- Other short burst: GRB, SGR

Crab nebula: background estimation

with a physical model (CXB, reflection,

albedo) in GRD1 of GRM (5%-10%),

From Fred's PPT.

In orbit Calibration plan

Calibration with Crab pulsar

- Get the phase resolved spectral parameters (Youli, Tuo, et al 2019).
- MC simulations including Crab pulsar events and background events with GRM mass model;
- GRM product generated, background spectrum generated with the specific phase.

Pulse Phase Range	Normalization	Spectral Index	Reduced χ^2
0.0 - 0.01	$6.42^{+0.09}_{-0.09}$	$2.16^{+0.005}_{-0.005}$	1.197
0.01 - 0.02	$6.77^{+0.13}_{-0.13}$	$2.087^{+0.006}_{-0.007}$	1.139
0.02 - 0.03	$4.98^{+0.12}_{-0.12}$	$2.033^{+0.008}_{-0.009}$	1.117
0.03 - 0.04	$2.67^{+0.09}_{-0.08}$	$1.984^{+0.012}_{-0.012}$	0.976
0.04 - 0.05	$1.75^{+0.07}_{-0.07}$	$1.972^{+0.015}_{-0.014}$	1.013
0.05 - 0.06	$1.18^{+0.05}_{-0.05}$	$1.933^{+0.016}_{-0.017}$	1.003
0.06 - 0.07	$0.87^{+0.05}_{-0.04}$	$1.906^{+0.019}_{-0.018}$	1.035
0.07 - 0.08	$0.73^{+0.04}_{-0.04}$	$1.912^{+0.021}_{-0.020}$	0.990
0.08 - 0.09	$0.57^{+0.04}_{-0.03}$	$1.866^{+0.022}_{-0.022}$	0.997
0.09 - 0.1	$0.49^{+0.03}_{-0.03}$	$1.867^{+0.024}_{-0.024}$	0.992
0.1 - 0.11	$0.42^{+0.03}_{-0.03}$	$1.843^{+0.025}_{-0.024}$	1.058
0.11 - 0.12	$0.39^{+0.03}_{-0.03}$	$1.844^{+0.026}_{-0.026}$	1.047
0.12 - 0.13	$0.39^{+0.03}_{-0.03}$	$1.866^{+0.026}_{-0.026}$	0.969

Table 3: The phase-resolved spectral analysis results of HE together with those of ME. A *powerlaw* model was used.

The phase resolved spectral parameters of Crab from *Insight*-HXMT/HE, ME(Youli, Tuo. et al 2019)

In orbit Calibration plan

IDX	Norm(logpar)	Confidence Range (2.706)		
GRD01	0.491750+/-1.00441E-02	0.475228	0.508272	(-0.0165224,0.0165224)
GRD02	0.465959+/-1.00435E-02	0.449438	0.482481	(-0.0165214,0.0165214)
GRD03	0.446908+/-1.00057E-02	0.430449	0.463367	(-0.0164594,0.0164594)

Notice,

- 1) Background is considered,
- 2) Crab Nebula is not yet considered
- 3) Albedo effected not yet considered
- 4) The Crab pulsar is offset by an angle of $\theta = 30^{\circ}$ from the axis.

Crab not observable before Fall 2024 \rightarrow use Sco-X1, Cyg-X1 (high state) during commissioning

- Relative ECLAIRs / GRM calibration, possibly simultaneous observations by Swift or Integral

- SVOM to be launched soon, calibration plan developed.
- The Crab pulsar (and nebular)will be used to absolute calibration (more work needed: specific nebular/pulsar spectrum)
- Relative calibration is through joint observation of Cyg X-1 and/or Sco X-1 (maybe simultaneous observations by Swift or Integral and ???)

Comments and suggestions are welcomed, Thanks!